Nikhil Chavan-Dafle

Contact Information	☑ nikhilncd@gmail.com ▲ +1-412-478-5038	♥ www.nikhilcd.com♥ New York, NY, USA		
Summary	A robotics researcher and technical leader with a track record of delivering impactful research and systems leading to best paper awards, strategic patents, and tech transfer to products.			
Education E	PhD - Massachusetts Institute of Technology (MIT) Thesis: Dexterous Manipulation with Simple Grippers D Committee: Alberto Rodriguez (Advisor), Russ Tedrake, Neville Hogan, Matt Mason		May 2020	
	MS - Carnegie Mellon University (CMU) Project: Extrinsic Dexterity for In-hand Manipu Advisor: Matt Mason, Robotics Institute, CMU		December 2013	
	B.Tech - College of Engineering Pune (CO	EP) , India	May 2011	
•	Tech Lead and Staff Research Scientist, Saturation Lead the Robot Perception group and worked w	-	2020 - 2024 siness alignment.	
	Research Projects - Set the technical direction and contributed with hands-on development. <u>Shape-and-Action Prediction for Robotic Manipulation</u> [Publications: 1, 2, 3, 3, 1, 2 Patents] Simultaneous shape-and-grasp inference at 30FPS provides high accuracy and success rate.			
	Scene Reconstruction and Gen-AI [Publications: 1 \square , 2 \square , 3 \square 2 Patents - \bigcirc 1 Strategic Patent] Vision-Language Model enables generalizable 3D reconstruction for robotics and AR/VR. Instance-level shape priors and text prompts provides precise control on image generation.			
	Semantic Scene Registration [Publication: 12] 1 Patent 1 Tech Transfer to Product] Semantic map from RGB video and registration to a LiDAR map provides enhanced UX.			
	Systems and Tools Development - Delivered research outcomes through modules and demos.			
	Interactive Floorplan App demonstrated refined floorplan generation from a noisy 1D LiDAR scan from Samsung JetBot. The semantic registration adds 3D features to the map in SmartThings.			
	Samsung Robotics Benchmark rigorously tested our autonomous robot system for table bussing and dishwasher loading applications, with the vision of house-help robot - Samsung BotHandy.			
	StartUp Kit and Digital Twin platform to facilitate Samsung AI teams' participation in the benchmark.			
	Graduate Researcher, The Manipulation an Picking with Purpose: Task-driven and Obser	,	2014 - 2020	
	 Trained a robot to grasp objects considering observability and manipulability for a desired task. Demonstrated the bi-manual robot policy for industrial kitting for precise object rearrangement. 			
	Prehensile Pushing: In-hand Manipulation with External Contacts			
	Developed algorithms for <i>motion cones</i> – efficient dynamics representation of contact-rich tasks.			
	• Leveraged motion cones for up to 1000x faster in-hand manipulation planning and control.			
	Graduate Researcher, Manipulation Lab, R Extrinsic Dexterity: Dexterous Manipulation u	sing External Resources	2012-2013	
	 Presented a novel idea of using gravity, dynamic motions, and environment for dexterity. Represented the connectivity of grasps with grasp-graphs for planning in-hand manipulations. 			
	nepresented the connectivity of grasps with grasp-graphs for planning in-fland indhipulations.			

Nikhil Chavan-Dafle

Summer Projects Ø	Amazon Robotics Challenge (P 1 st in 2017 (Stowing Task) , 3 rd in 2016, 2 nd in 2015] <i>A member of Team MIT-Princeton</i> 2015 - 2017 Developed a grasping motion primitive to pick up desired objects from a cluttered bin. Participated in developing the robot hardware, system setup, and overall task planning. Trajectory Optimization for Industrial Assembly Operations	
Selected Papers	 Research Intern, ABB Corporate Research Center, Västerås, Sweden Samsung Al Center FineControlNet: Fine-level Text Control for Image Generation with Spatially Aligned Text Control; H. Choi, I. Kasahara, S. Engin, M. Graule, N. Chavan-Dafle, V. Isler; WACV'25 O 	
(ALL on GScholar)	 RIC: Rotate-Inpaint-Complete for Generalizable Scene Reconstruction; I. Kasahara, S. Agrawal, S. Engin, S. Song, <u>N. Chavan-Dafle</u>, V. Isler; ICRA'24 O 	
	 HandNeRF: Learning to Reconstruct Hand-Object Interaction Scene from a Single RGB Image; H. Choi, <u>N. Chavan-Dafle</u>, J. Yuan, V. Isler, H. Park; ICRA'24 O 	
	 VioLA: Aligning Videos to 2D LiDAR Scans; J. Chao,S. Engin, N. Chavan-Dafle, et al.; ICRA'24 O 	
	 Real-time Simultaneous Multi-Object 3D Shape Reconstruction, 6DoF Pose Estimation and Dense Grasp Prediction; S. Agarwal, <u>N. Chavan-Dafle</u>, I. Kasahara, S. Engin, J. Huh, V. Isler; IROS'23 	
	 Pick2Place: Task-aware 6DoF Grasp Estimation via Object-Centric Perspective Affordance; Z. He, <u>N. Chavan-Dafle</u>, J. Huh, S. Song, V. Isler; ICRA'23 	
	 Simultaneous Object Reconstruction and Grasp Prediction using a Camera-centric Object Shell Representation; <u>N. Chavan-Dafle</u>, S. Popovych, S. Agrawal, D. Lee, and V. Isler; IROS'22 O 	
	MIT and CMU	
	 Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross- Domain Image Matching; A. Zheng et al. including <u>N. Chavan-Dafle</u>; IJRR'19, ICRA'18 (
	 Planar In-Hand Manipulation via Motion Cones; <u>N. Chavan-Dafle</u>, R. Holladay, and A. Rodriguez; IJRR'19 [Invited paper], RSS'18 (
	 Extrinsic Dexterity: In-Hand Manipulation with External Forces; <u>N. Chavan-Dafle</u> et al.; ICRA'14 (PBest Research Video Award Finalist) 	
Selected	Two-Phase Gripper to Reorient and Grasp (US 9808936 B2)	
PATENTS (Lead inventor)	Robotic Manipulation of Objects for Grip Adjustment (PCT/US2019/046771)	
	PnuGrip: An Active Two-Phase Gripper for Dexterous Manipulation (US2022/0105642A1)	
8	Object Shell Reconstruction for Precise Grasping (US11741670B2)	
	Synergies between Pick and Place: Task-aware Grasp Estimation(WA-202303-021-1-US0)	
Skills	Leadership: Team Building, Project Management, Technical Direction, Business Communication Libraries and Frameworks: PyTorch, Tensorflow, OpenCV, Open3D, PCL, ROS Software Tools: PyBullet, MuJoCo, Blender, SolidWorks, OnShape, Adobe CC Technical Languages: Python, C++, Matlab/Simulink	
Honors & Awards	A four-year funding award from Lenovo, Delta Electronics, and HKUST-MIT Research Alliance to develop dexterous manipulation capability for flexible manufacturing automation 2016-20 Karl Chang Innovation Fund award (MIT Institute Funding) for my PhD research project 2014-16 Featured on the homepage of MIT twice and on TechCrunch, and many other media networks for my work on dexterous manipulation with simple grippers NSF and IEEE Robotics and Automation Society conference travel awards for CASE 2018, ICRA 2018, ISRR 2017, IROS 2015, and CASE 2015	